- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bronner, Christopher (3)
-
Crommie, Michael F. (3)
-
Fischer, Felix R. (3)
-
Louie, Steven G. (3)
-
Rizzo, Daniel J. (3)
-
Cao, Ting (2)
-
Chen, Ting (2)
-
Durr, Rebecca A. (2)
-
Jiang, Jingwei (2)
-
Veber, Gregory (2)
-
Butler, Paul (1)
-
Choi, Won-Woo (1)
-
Jacobse, Peter H. (1)
-
Joshi, Dharati (1)
-
Joshi, Trinity (1)
-
Jørgensen, Jakob H. (1)
-
Kalayjian, Alin (1)
-
Liou, Franklin (1)
-
Marangoni, Tomas (1)
-
McCurdy, Ryan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rizzo, Daniel J.; Jiang, Jingwei; Joshi, Dharati; Veber, Gregory; Bronner, Christopher; Durr, Rebecca A.; Jacobse, Peter H.; Cao, Ting; Kalayjian, Alin; Rodriguez, Henry; et al (, ACS Nano)
-
Rizzo, Daniel J.; Veber, Gregory; Jiang, Jingwei; McCurdy, Ryan; Cao, Ting; Bronner, Christopher; Chen, Ting; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F. (, Science)The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) are challenging because lateral quantum confinement and many-electron interactions induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs. We verify the resulting metallicity using scanning tunneling spectroscopy as well as first-principles density-functional theory and tight-binding calculations. Our results reveal that the metallic bandwidth in GNRs can be tuned over a wide range by controlling the overlap of zero-mode wave functions through intentional sublattice symmetry breaking.more » « less
An official website of the United States government
